🟧 Image Normalization
Function Description
This operator is used to readjust the brightness information of each pixel in the input image, unifying pixel values of different scales or distributions to a standard baseline, eliminating numerical differences caused by different brightness, contrast, or bit depth between images.
Usage Scenarios
-
Deep learning models may require input image pixel values to be within a standard range (such as [0, 1] or [-1, 1]), or conform to standard normal distribution (mean 0, variance 1), which can be preprocessed through image normalization.
-
When images are captured under different lighting conditions, it may cause inconsistent image brightness. Normalization can reduce the impact of lighting changes and improve algorithm robustness.
Input Output
Input |
Image: Input images or image lists to be processed, can be grayscale or color images. |
Output |
Normalized Image: Images or image lists after normalization processing. |
Parameter Description
Normalization Method
Parameter Description |
Select the algorithm for normalizing image pixel values. |
Parameter Adjustment |
|
Normalization Range Maximum Value
Parameter Description |
Set the maximum value or scaling factor of the numerical range after normalization. |
Parameter Adjustment |
|
Parameter Range |
[1,10000000], Default value: 1 |
Enable Clipping
Parameter Description |
Control whether to force limit normalization results within a specified minimum and maximum value range. |
Parameter Adjustment |
|