🟠 YOLOv5 Segmentation
Function Description
The operator is based on deep learning models of YOLO architecture, performing instance segmentation on input images, quickly detecting targets in images and generating precise contours for each target.
Usage Scenarios
Suitable for scenarios requiring fast or real-time processing, or needing to obtain precise shape information of targets.
Input Output
Input |
Image: Single color image to be segmented, must be in RGB format. |
Output |
Detection result: A detection instance list. Each element in the list represents an identified object, containing its class, confidence score and contour polygon. |
Parameter Description
Weight File
Parameter Description |
Upload pre-trained YOLO segmentation model. |
Parameter Adjustment |
Supports both .onnx and .epicnn formats:
|
Enable GPU
Parameter Description |
When using .onnx model, sets whether to use CPU or GPU computation. Note: This option is invalid for .epicnn models. |
Parameter Adjustment |
|
Confidence Threshold
Parameter Description |
The model gives each detected target a confidence score, only targets with scores exceeding this threshold will be considered valid results and output. |
Parameter Adjustment |
|
Parameter Range |
[0,1], default value: 0.8 |